Copied to
clipboard

G = C42.122D10order 320 = 26·5

122nd non-split extension by C42 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.122D10, C10.72- 1+4, (C4×Q8)⋊5D5, (Q8×C20)⋊5C2, C4⋊C4.291D10, D10⋊Q810C2, (C4×Dic10)⋊36C2, Dic5⋊Q89C2, C4.18(C4○D20), C422D517C2, C42⋊D533C2, (C2×Q8).176D10, Dic53Q817C2, D208C4.10C2, C20.116(C4○D4), (C2×C20).621C23, (C2×C10).112C24, (C4×C20).238C22, C4.D20.12C2, C20.23D4.9C2, Dic5.37(C4○D4), (C2×D20).146C22, C4⋊Dic5.303C22, (Q8×C10).212C22, (C4×Dic5).89C22, (C22×D5).44C23, C22.137(C23×D5), D10⋊C4.68C22, C53(C22.50C24), (C2×Dic5).221C23, C10.D4.68C22, C2.10(Q8.10D10), (C2×Dic10).153C22, C2.27(D5×C4○D4), C4⋊C4⋊D510C2, C10.53(C2×C4○D4), C2.60(C2×C4○D20), (C2×C4×D5).257C22, (C5×C4⋊C4).340C22, (C2×C4).653(C22×D5), SmallGroup(320,1240)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C42.122D10
C1C5C10C2×C10C2×Dic5C2×C4×D5C42⋊D5 — C42.122D10
C5C2×C10 — C42.122D10
C1C22C4×Q8

Generators and relations for C42.122D10
 G = < a,b,c,d | a4=b4=d2=1, c10=b2, ab=ba, ac=ca, dad=ab2, cbc-1=dbd=a2b-1, dcd=c9 >

Subgroups: 694 in 212 conjugacy classes, 97 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, Q8, C23, D5, C10, C42, C42, C42, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×Q8, Dic5, Dic5, C20, C20, D10, C2×C10, C42⋊C2, C4×D4, C4×Q8, C4×Q8, C22⋊Q8, C4.4D4, C422C2, C4⋊Q8, Dic10, C4×D5, D20, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×Q8, C22×D5, C22.50C24, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, D10⋊C4, C4×C20, C4×C20, C5×C4⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×D20, Q8×C10, C4×Dic10, C42⋊D5, C4.D20, C422D5, Dic53Q8, D208C4, D10⋊Q8, C4⋊C4⋊D5, Dic5⋊Q8, C20.23D4, Q8×C20, C42.122D10
Quotients: C1, C2, C22, C23, D5, C4○D4, C24, D10, C2×C4○D4, 2- 1+4, C22×D5, C22.50C24, C4○D20, C23×D5, C2×C4○D20, Q8.10D10, D5×C4○D4, C42.122D10

Smallest permutation representation of C42.122D10
On 160 points
Generators in S160
(1 94 150 133)(2 95 151 134)(3 96 152 135)(4 97 153 136)(5 98 154 137)(6 99 155 138)(7 100 156 139)(8 81 157 140)(9 82 158 121)(10 83 159 122)(11 84 160 123)(12 85 141 124)(13 86 142 125)(14 87 143 126)(15 88 144 127)(16 89 145 128)(17 90 146 129)(18 91 147 130)(19 92 148 131)(20 93 149 132)(21 118 80 47)(22 119 61 48)(23 120 62 49)(24 101 63 50)(25 102 64 51)(26 103 65 52)(27 104 66 53)(28 105 67 54)(29 106 68 55)(30 107 69 56)(31 108 70 57)(32 109 71 58)(33 110 72 59)(34 111 73 60)(35 112 74 41)(36 113 75 42)(37 114 76 43)(38 115 77 44)(39 116 78 45)(40 117 79 46)
(1 22 11 32)(2 72 12 62)(3 24 13 34)(4 74 14 64)(5 26 15 36)(6 76 16 66)(7 28 17 38)(8 78 18 68)(9 30 19 40)(10 80 20 70)(21 149 31 159)(23 151 33 141)(25 153 35 143)(27 155 37 145)(29 157 39 147)(41 87 51 97)(42 137 52 127)(43 89 53 99)(44 139 54 129)(45 91 55 81)(46 121 56 131)(47 93 57 83)(48 123 58 133)(49 95 59 85)(50 125 60 135)(61 160 71 150)(63 142 73 152)(65 144 75 154)(67 146 77 156)(69 148 79 158)(82 107 92 117)(84 109 94 119)(86 111 96 101)(88 113 98 103)(90 115 100 105)(102 136 112 126)(104 138 114 128)(106 140 116 130)(108 122 118 132)(110 124 120 134)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 21)(2 30)(3 39)(4 28)(5 37)(6 26)(7 35)(8 24)(9 33)(10 22)(11 31)(12 40)(13 29)(14 38)(15 27)(16 36)(17 25)(18 34)(19 23)(20 32)(41 129)(42 138)(43 127)(44 136)(45 125)(46 134)(47 123)(48 132)(49 121)(50 130)(51 139)(52 128)(53 137)(54 126)(55 135)(56 124)(57 133)(58 122)(59 131)(60 140)(61 159)(62 148)(63 157)(64 146)(65 155)(66 144)(67 153)(68 142)(69 151)(70 160)(71 149)(72 158)(73 147)(74 156)(75 145)(76 154)(77 143)(78 152)(79 141)(80 150)(81 111)(82 120)(83 109)(84 118)(85 107)(86 116)(87 105)(88 114)(89 103)(90 112)(91 101)(92 110)(93 119)(94 108)(95 117)(96 106)(97 115)(98 104)(99 113)(100 102)

G:=sub<Sym(160)| (1,94,150,133)(2,95,151,134)(3,96,152,135)(4,97,153,136)(5,98,154,137)(6,99,155,138)(7,100,156,139)(8,81,157,140)(9,82,158,121)(10,83,159,122)(11,84,160,123)(12,85,141,124)(13,86,142,125)(14,87,143,126)(15,88,144,127)(16,89,145,128)(17,90,146,129)(18,91,147,130)(19,92,148,131)(20,93,149,132)(21,118,80,47)(22,119,61,48)(23,120,62,49)(24,101,63,50)(25,102,64,51)(26,103,65,52)(27,104,66,53)(28,105,67,54)(29,106,68,55)(30,107,69,56)(31,108,70,57)(32,109,71,58)(33,110,72,59)(34,111,73,60)(35,112,74,41)(36,113,75,42)(37,114,76,43)(38,115,77,44)(39,116,78,45)(40,117,79,46), (1,22,11,32)(2,72,12,62)(3,24,13,34)(4,74,14,64)(5,26,15,36)(6,76,16,66)(7,28,17,38)(8,78,18,68)(9,30,19,40)(10,80,20,70)(21,149,31,159)(23,151,33,141)(25,153,35,143)(27,155,37,145)(29,157,39,147)(41,87,51,97)(42,137,52,127)(43,89,53,99)(44,139,54,129)(45,91,55,81)(46,121,56,131)(47,93,57,83)(48,123,58,133)(49,95,59,85)(50,125,60,135)(61,160,71,150)(63,142,73,152)(65,144,75,154)(67,146,77,156)(69,148,79,158)(82,107,92,117)(84,109,94,119)(86,111,96,101)(88,113,98,103)(90,115,100,105)(102,136,112,126)(104,138,114,128)(106,140,116,130)(108,122,118,132)(110,124,120,134), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,21)(2,30)(3,39)(4,28)(5,37)(6,26)(7,35)(8,24)(9,33)(10,22)(11,31)(12,40)(13,29)(14,38)(15,27)(16,36)(17,25)(18,34)(19,23)(20,32)(41,129)(42,138)(43,127)(44,136)(45,125)(46,134)(47,123)(48,132)(49,121)(50,130)(51,139)(52,128)(53,137)(54,126)(55,135)(56,124)(57,133)(58,122)(59,131)(60,140)(61,159)(62,148)(63,157)(64,146)(65,155)(66,144)(67,153)(68,142)(69,151)(70,160)(71,149)(72,158)(73,147)(74,156)(75,145)(76,154)(77,143)(78,152)(79,141)(80,150)(81,111)(82,120)(83,109)(84,118)(85,107)(86,116)(87,105)(88,114)(89,103)(90,112)(91,101)(92,110)(93,119)(94,108)(95,117)(96,106)(97,115)(98,104)(99,113)(100,102)>;

G:=Group( (1,94,150,133)(2,95,151,134)(3,96,152,135)(4,97,153,136)(5,98,154,137)(6,99,155,138)(7,100,156,139)(8,81,157,140)(9,82,158,121)(10,83,159,122)(11,84,160,123)(12,85,141,124)(13,86,142,125)(14,87,143,126)(15,88,144,127)(16,89,145,128)(17,90,146,129)(18,91,147,130)(19,92,148,131)(20,93,149,132)(21,118,80,47)(22,119,61,48)(23,120,62,49)(24,101,63,50)(25,102,64,51)(26,103,65,52)(27,104,66,53)(28,105,67,54)(29,106,68,55)(30,107,69,56)(31,108,70,57)(32,109,71,58)(33,110,72,59)(34,111,73,60)(35,112,74,41)(36,113,75,42)(37,114,76,43)(38,115,77,44)(39,116,78,45)(40,117,79,46), (1,22,11,32)(2,72,12,62)(3,24,13,34)(4,74,14,64)(5,26,15,36)(6,76,16,66)(7,28,17,38)(8,78,18,68)(9,30,19,40)(10,80,20,70)(21,149,31,159)(23,151,33,141)(25,153,35,143)(27,155,37,145)(29,157,39,147)(41,87,51,97)(42,137,52,127)(43,89,53,99)(44,139,54,129)(45,91,55,81)(46,121,56,131)(47,93,57,83)(48,123,58,133)(49,95,59,85)(50,125,60,135)(61,160,71,150)(63,142,73,152)(65,144,75,154)(67,146,77,156)(69,148,79,158)(82,107,92,117)(84,109,94,119)(86,111,96,101)(88,113,98,103)(90,115,100,105)(102,136,112,126)(104,138,114,128)(106,140,116,130)(108,122,118,132)(110,124,120,134), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,21)(2,30)(3,39)(4,28)(5,37)(6,26)(7,35)(8,24)(9,33)(10,22)(11,31)(12,40)(13,29)(14,38)(15,27)(16,36)(17,25)(18,34)(19,23)(20,32)(41,129)(42,138)(43,127)(44,136)(45,125)(46,134)(47,123)(48,132)(49,121)(50,130)(51,139)(52,128)(53,137)(54,126)(55,135)(56,124)(57,133)(58,122)(59,131)(60,140)(61,159)(62,148)(63,157)(64,146)(65,155)(66,144)(67,153)(68,142)(69,151)(70,160)(71,149)(72,158)(73,147)(74,156)(75,145)(76,154)(77,143)(78,152)(79,141)(80,150)(81,111)(82,120)(83,109)(84,118)(85,107)(86,116)(87,105)(88,114)(89,103)(90,112)(91,101)(92,110)(93,119)(94,108)(95,117)(96,106)(97,115)(98,104)(99,113)(100,102) );

G=PermutationGroup([[(1,94,150,133),(2,95,151,134),(3,96,152,135),(4,97,153,136),(5,98,154,137),(6,99,155,138),(7,100,156,139),(8,81,157,140),(9,82,158,121),(10,83,159,122),(11,84,160,123),(12,85,141,124),(13,86,142,125),(14,87,143,126),(15,88,144,127),(16,89,145,128),(17,90,146,129),(18,91,147,130),(19,92,148,131),(20,93,149,132),(21,118,80,47),(22,119,61,48),(23,120,62,49),(24,101,63,50),(25,102,64,51),(26,103,65,52),(27,104,66,53),(28,105,67,54),(29,106,68,55),(30,107,69,56),(31,108,70,57),(32,109,71,58),(33,110,72,59),(34,111,73,60),(35,112,74,41),(36,113,75,42),(37,114,76,43),(38,115,77,44),(39,116,78,45),(40,117,79,46)], [(1,22,11,32),(2,72,12,62),(3,24,13,34),(4,74,14,64),(5,26,15,36),(6,76,16,66),(7,28,17,38),(8,78,18,68),(9,30,19,40),(10,80,20,70),(21,149,31,159),(23,151,33,141),(25,153,35,143),(27,155,37,145),(29,157,39,147),(41,87,51,97),(42,137,52,127),(43,89,53,99),(44,139,54,129),(45,91,55,81),(46,121,56,131),(47,93,57,83),(48,123,58,133),(49,95,59,85),(50,125,60,135),(61,160,71,150),(63,142,73,152),(65,144,75,154),(67,146,77,156),(69,148,79,158),(82,107,92,117),(84,109,94,119),(86,111,96,101),(88,113,98,103),(90,115,100,105),(102,136,112,126),(104,138,114,128),(106,140,116,130),(108,122,118,132),(110,124,120,134)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,21),(2,30),(3,39),(4,28),(5,37),(6,26),(7,35),(8,24),(9,33),(10,22),(11,31),(12,40),(13,29),(14,38),(15,27),(16,36),(17,25),(18,34),(19,23),(20,32),(41,129),(42,138),(43,127),(44,136),(45,125),(46,134),(47,123),(48,132),(49,121),(50,130),(51,139),(52,128),(53,137),(54,126),(55,135),(56,124),(57,133),(58,122),(59,131),(60,140),(61,159),(62,148),(63,157),(64,146),(65,155),(66,144),(67,153),(68,142),(69,151),(70,160),(71,149),(72,158),(73,147),(74,156),(75,145),(76,154),(77,143),(78,152),(79,141),(80,150),(81,111),(82,120),(83,109),(84,118),(85,107),(86,116),(87,105),(88,114),(89,103),(90,112),(91,101),(92,110),(93,119),(94,108),(95,117),(96,106),(97,115),(98,104),(99,113),(100,102)]])

65 conjugacy classes

class 1 2A2B2C2D2E4A···4H4I4J4K4L4M4N4O4P4Q4R4S5A5B10A···10F20A···20H20I···20AF
order1222224···4444444444445510···1020···2020···20
size111120202···24441010101020202020222···22···24···4

65 irreducible representations

dim1111111111112222222444
type++++++++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C2C2D5C4○D4C4○D4D10D10D10C4○D202- 1+4Q8.10D10D5×C4○D4
kernelC42.122D10C4×Dic10C42⋊D5C4.D20C422D5Dic53Q8D208C4D10⋊Q8C4⋊C4⋊D5Dic5⋊Q8C20.23D4Q8×C20C4×Q8Dic5C20C42C4⋊C4C2×Q8C4C10C2C2
# reps11212112211124466216144

Matrix representation of C42.122D10 in GL6(𝔽41)

4000000
0400000
000100
0040000
0000320
0000032
,
100000
010000
0032000
0003200
0000400
0000181
,
160000
3560000
009000
000900
000045
00003837
,
100000
35400000
0040000
000100
00003736
000034

G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,1,0,0,0,0,0,0,0,32,0,0,0,0,0,0,32],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,32,0,0,0,0,0,0,32,0,0,0,0,0,0,40,18,0,0,0,0,0,1],[1,35,0,0,0,0,6,6,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,4,38,0,0,0,0,5,37],[1,35,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,37,3,0,0,0,0,36,4] >;

C42.122D10 in GAP, Magma, Sage, TeX

C_4^2._{122}D_{10}
% in TeX

G:=Group("C4^2.122D10");
// GroupNames label

G:=SmallGroup(320,1240);
// by ID

G=gap.SmallGroup(320,1240);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,232,758,100,794,136,12550]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^10=b^2,a*b=b*a,a*c=c*a,d*a*d=a*b^2,c*b*c^-1=d*b*d=a^2*b^-1,d*c*d=c^9>;
// generators/relations

׿
×
𝔽